
PaperRobot: Knowledge Extraction, Prediction and Paper Writing to Assist Scientific Discovery

Qingyun Wang, Diya Li and Heng Ji (UIUC)

Kevin Knight (DiDi Labs)

Information Extraction for Knowledge Graph Construction

Knowledge Base Population

Source Collection

13岁以前的杨丽萍,是云南 一个山村小镇里光着脚丫到 处拾麦穗的乡下小姑娘,在 洱海之源过着艰苦而又不无 乐趣的童年生活。 Now, Ms. Yang, one of China's best-known dancers, is the director, choreographer and star of

•••

Aunque nacida en Dali, a la edad de nueve años Yang se mudó con su familia a Xishuangbanna. Debido a su extraordinario talento, la eligieron para integrar la Agrupación Artística de Canto ...

KB

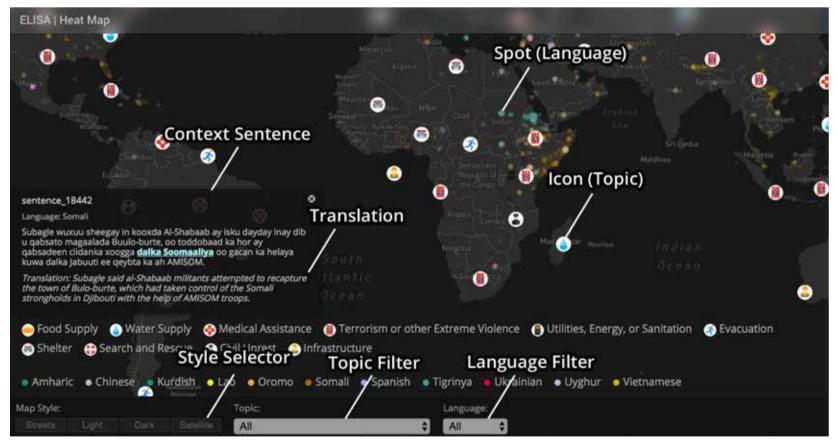
Yang Liping			
Traditional Chinese	楊麗萍		
Simplified Chinese	杨丽萍		
Transcriptions	[show]		

Spouse: Liu Chunqing State/Province-of-Residence: Yunnan

Entity Discovery and Linking

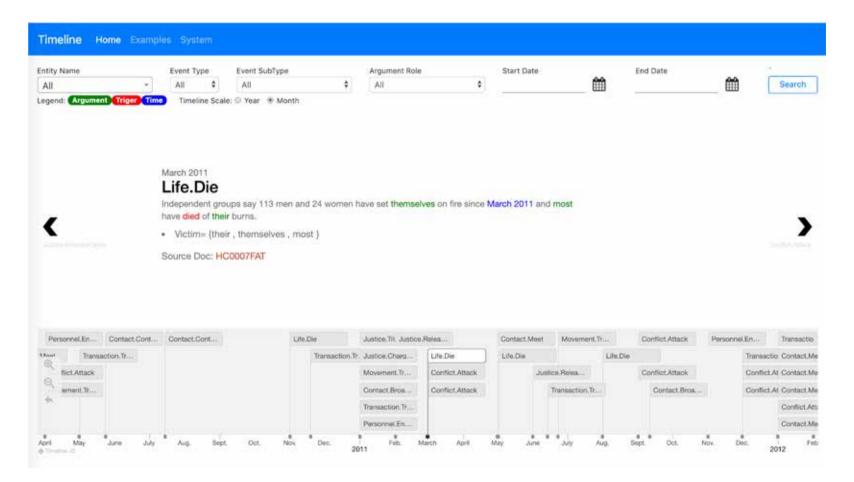
Liping Yang

Slot Filling Employer: University of Maine Title: Professor

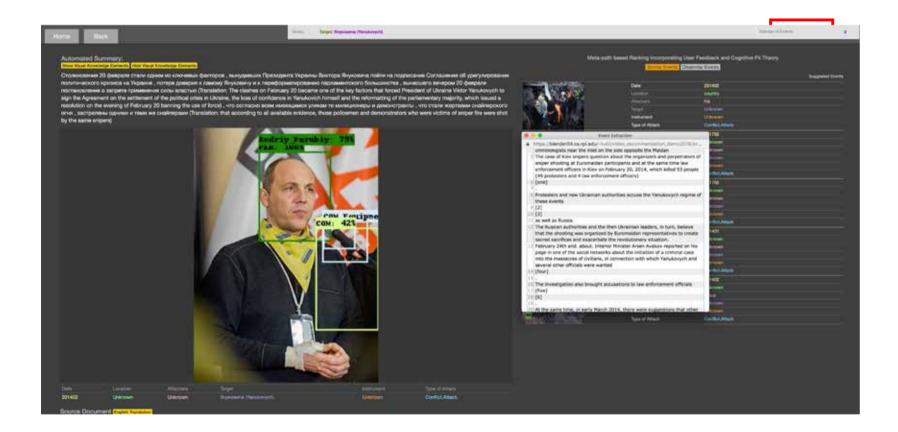

Employer: Ningbo Title: Mayor

...

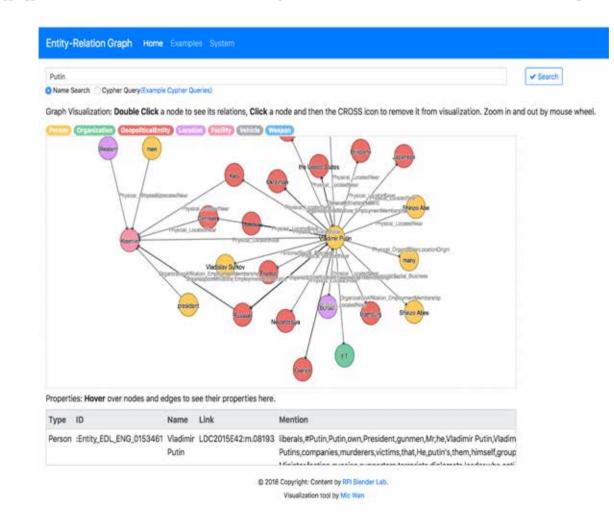
Recent Progress


		2015	2019
Portability	# Languages for EDL	1-3	300
	# Entity types	5	16,000
	# Slot types (English)	41	2,000
	# Event types (English)	33	1,000
Quality (Low-resource	Name Tagging	0%	Up to 76% F-score
Languages without gold standard annotations)	Cross-lingual Entity Linking	Up to 16% absolute improvement in accuracy	
Development Time		Half a year	1-10 hours
Cost		Supervised models based on 500 fully annotated documents	No manual annotation required for new language/domain

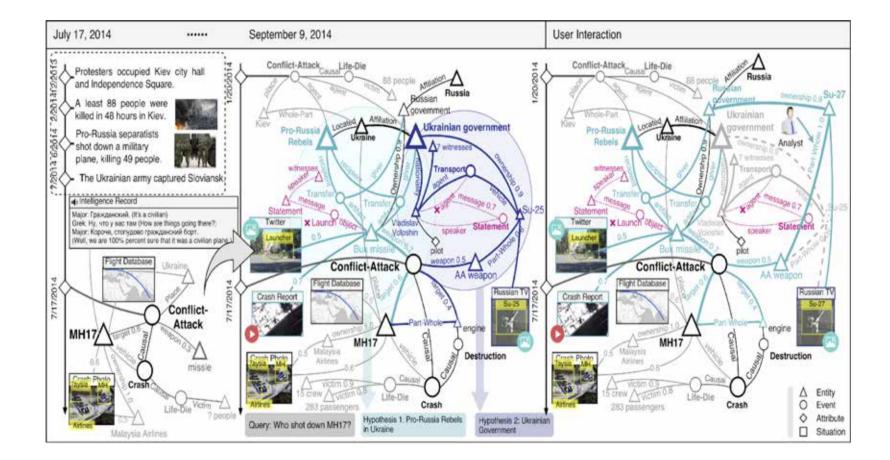
Applications: Disaster Relief


- Re-trainable Systems: <u>http://blender02.cs.rpi.edu:3300/elisa_ie/ap</u>i
- Data and Resources: <u>http://nlp.cs.rpi.edu/wikiann/</u>
- Demos: <u>http://blender02.cs.rpi.edu:3300/elisa_ie_http://blender02.cs.rpi.edu:3300/elisa_ie/heatmap</u> 5

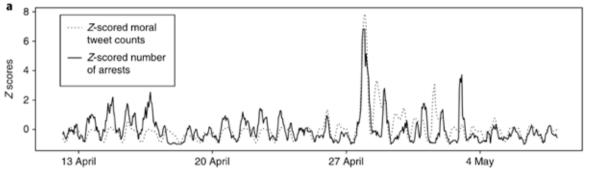
Applications: Event Tracking

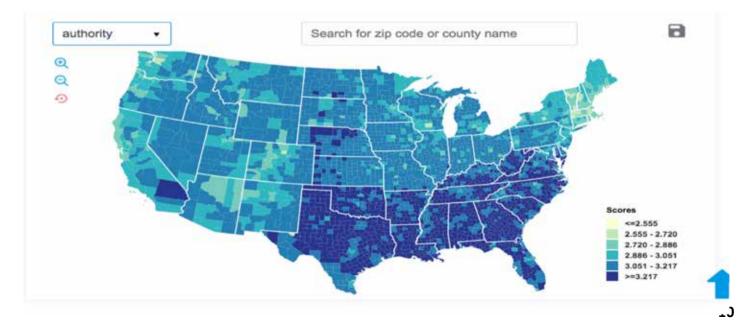

https://blender04.cs.rpi.edu/~lim22/gaia/GAIA_arg.html

Applications: Event Recommendation


https://blender04.cs.rpi.edu/~lud2/video_recommendation_demo2019/navigation_dark.html

Applications: Entity Relation Tracking


<u>https://blender04.cs.rpi.edu/~lim22/entity_demo/aida_index.html</u>

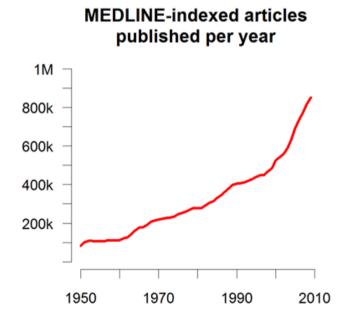

Applications: Intelligence Analysis

Applications: County-Level Moral Concerns

Applications: Ukraine Event and Moral Value Map

• Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-direction, Simulation, Tradition and Universalism (Schwartz, 2012)

Older Kids at School


• Help ourselves out?

WWW. PHDCOMICS. COM

Problem: Too Much Data and Too Little Time

- More than 500K papers are published at PubMed every year, and more than 1.2 million new papers are published in 2016 alone, bringing the total number of papers to over 26 million (Van Noorden, 2014)
- Human's reading ability keeps almost the same across years: US scientists estimated that they read, on average, only 264 papers per year (1 out of 5000 available papers, the same across years)

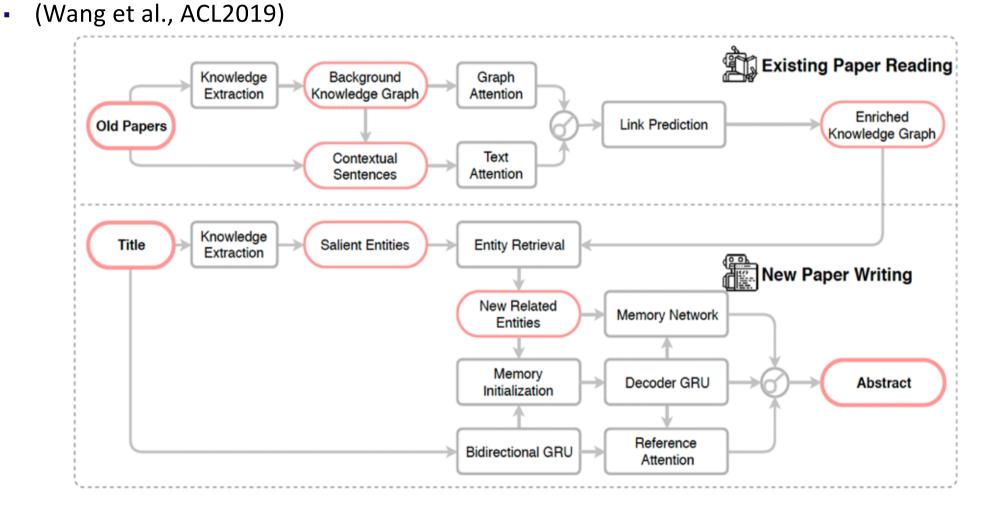
Application in Speeding up Scientific Discovery

Create New Ideas

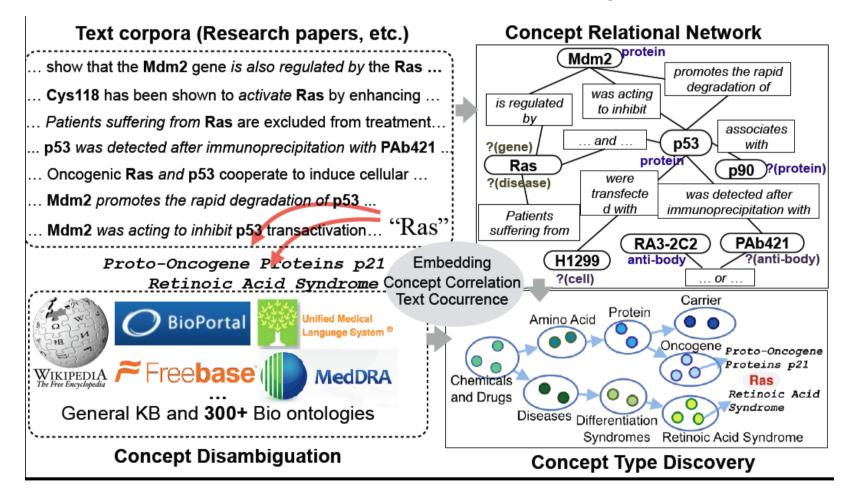
- Foster et al. (2015) shows that more than 60% of 6.4 million papers in biomedicine and chemistry published between 1934 and 2008 report findings that build on existing knowledge and provide additional innovations and improvements
- PaperRobot predicts new links (ideas) based on a new representation for each entity by combining knowledge graph structure and unstructured contextual text

WWW. PHDCOMICS. COM

Application in Speeding up Scientific Production

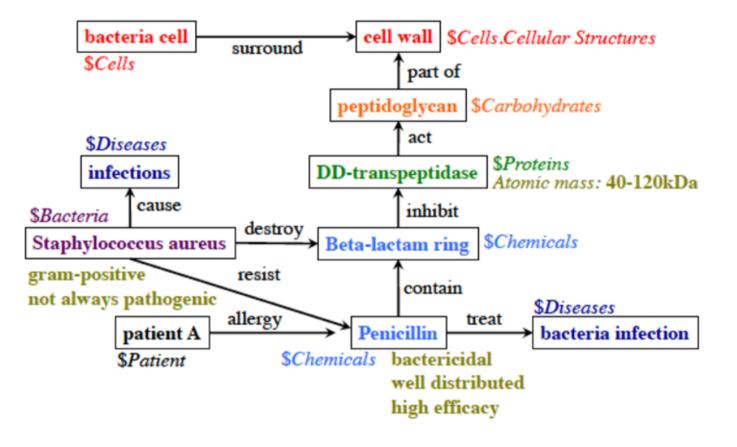

- Write a New Paper about New Ideas
 - Many scientists are, in fact, bad writers (Pinker, 2014):

"I know many scholars who have nothing to hide and no need to impress. They do groundbreaking work on important subjects, reason well about clear ideas, and are honest, down-to-earth people. Still, their writing stinks."

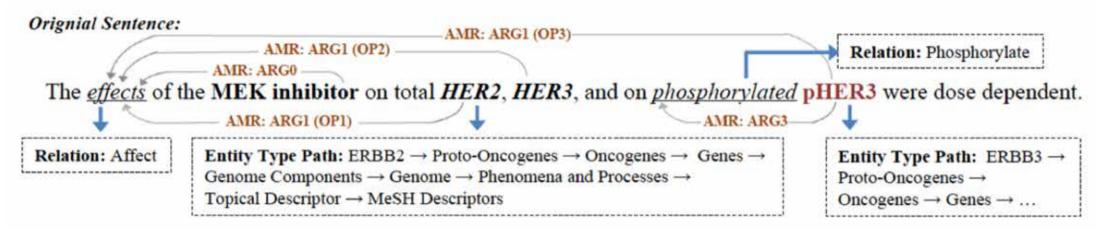

• PaperRobot automatically writes key elements of a new paper

	Old Human Written Papers
Human Written Title	Enriched Knowledge Graphs
· · · · · · · · · · · · · · · · · · ·	
(Abstract)	Abstract
+	
Conclusion and Future Work	Conclusion and Future Work
+	2 nd Paper
New Title	
1 st Paper	

PaperRobot Overview

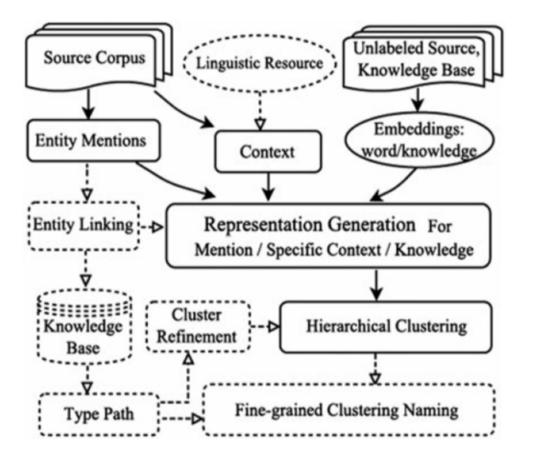


Build Knowledge Network to Accelerate Scientific Discovery

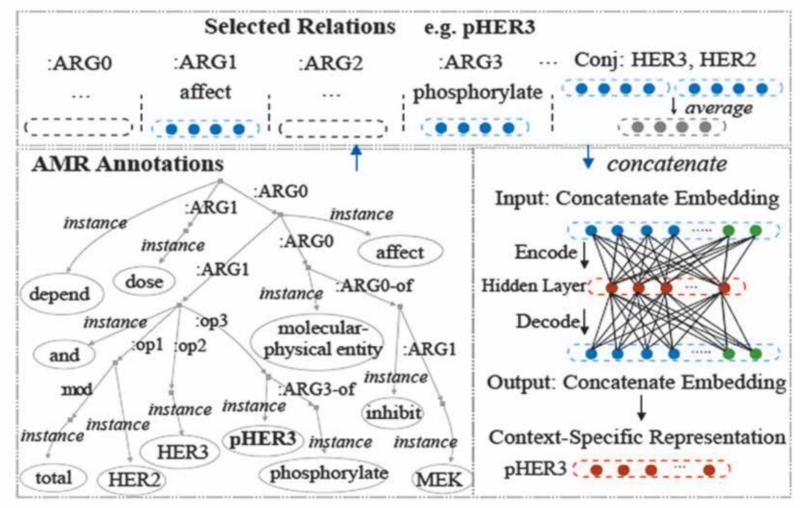


Biomedical Knowledge Graph Construction

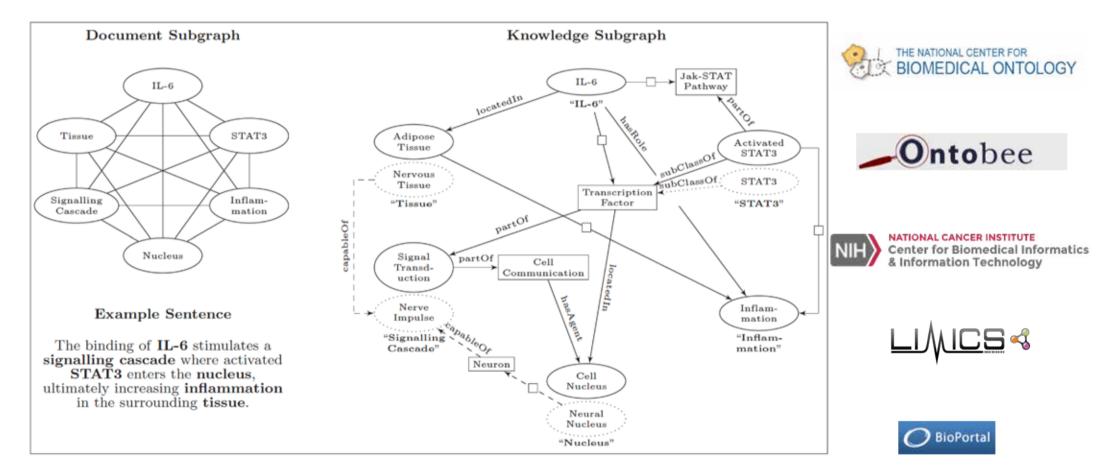
- Entity Extraction and Linking
- Relation Extraction
- Event Extraction



Entity Extraction and Linking

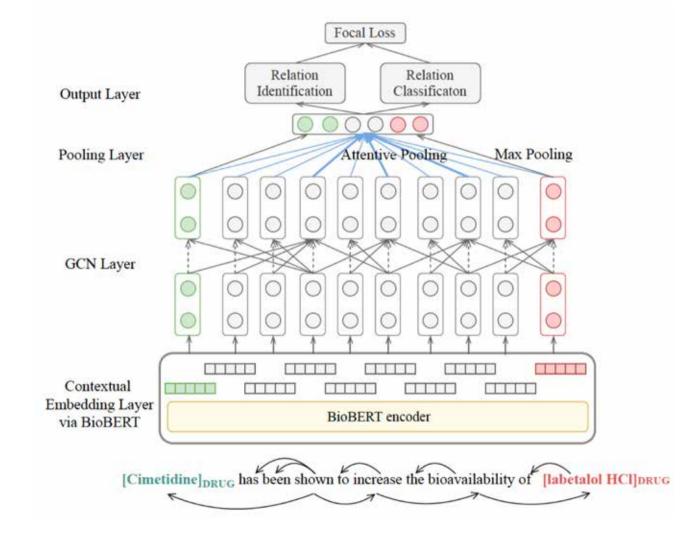

- Apply an entity mention extraction and linking system (Wei et al., 2013) to extract mentions
 of three entity types (Disease, Chemical and Gene)
- Obtain a MeSH3 Unique ID for each mention
- Link all entities to the Comparative Toxicogenomics Database (CTD) (Davis et al., 2016) and extract 133 subtypes of relations such as Marker/Mechanism, Therapeutic, and Increase Expression based on the MeSH Unique IDs

Entity Extraction and Linking: Unsupervised Approach



- Representation Generation:
 - Mention Representation (global contexts)
 - Specific context representation
 - knowledge representation (Knowledge graph)
- Fine-grained Typing
 - Type path extraction from KB
 - Hierarchical Clustering
 - Cluster Refinement
 - Fine-grained cluster naming

Abstract Meaning Representation for Mentions



Entity Linking to 300+ Biomedical Ontologies

• Metrics: Salience, Similarity, Coherence (Pan et al., 2015, Wang et al., 2015)

Context-aware and Syntax-aware Relation Extraction

Relation Extraction Results

• Results on Drug-Drug Interactions dataset (Herrero-Zazo et al., 2013)

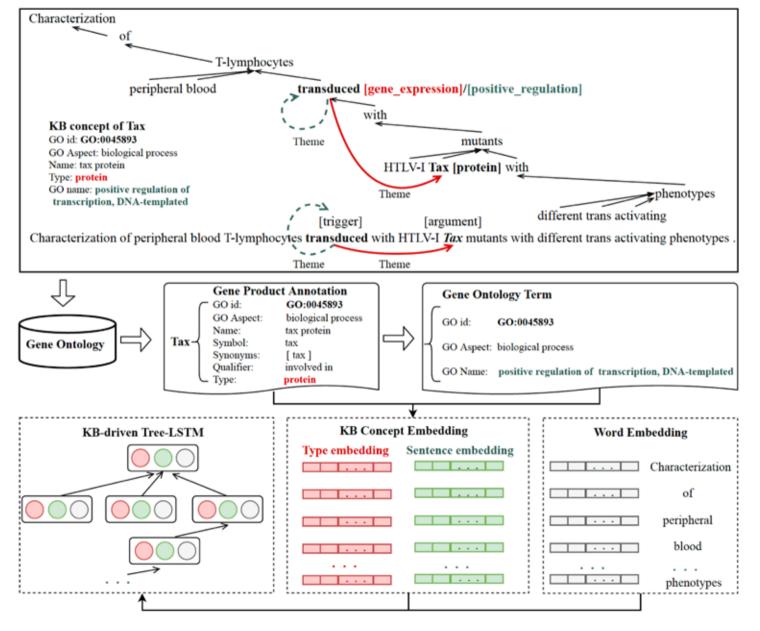
System	Prec	Rec	F1
CNN (Liu et al., 2016)	75.70	64.66	69.75
Multi Channel CNN (Quan et al.,	75.99	65.25	70.21
2016)			
GRU (Yi et al., 2017)	73.67	70.79	72.20
AB-LSTM (Sahu and Anand,	74.47	64.96	69.39
2018)			
CNN-GCNN (Asada et al., 2018)	73.31	71.81	72.55
Position-aware LSTM (Zhou	75.80	70.38	72.99
et al., 2018a)			
RHCNN (Sun et al., 2019)	77.30	73.75	75.48
LSTM baseline	69.34	62.74	65.88
GCN baseline	71.96	67.14	69.47
-without attentive pooling	77.12	75.03	76.06
-without BioBERT	76.51	73.56	75.01
-without multi-task learning	76.01	71.92	73.91
Our Model	77.62	75.69	76.64

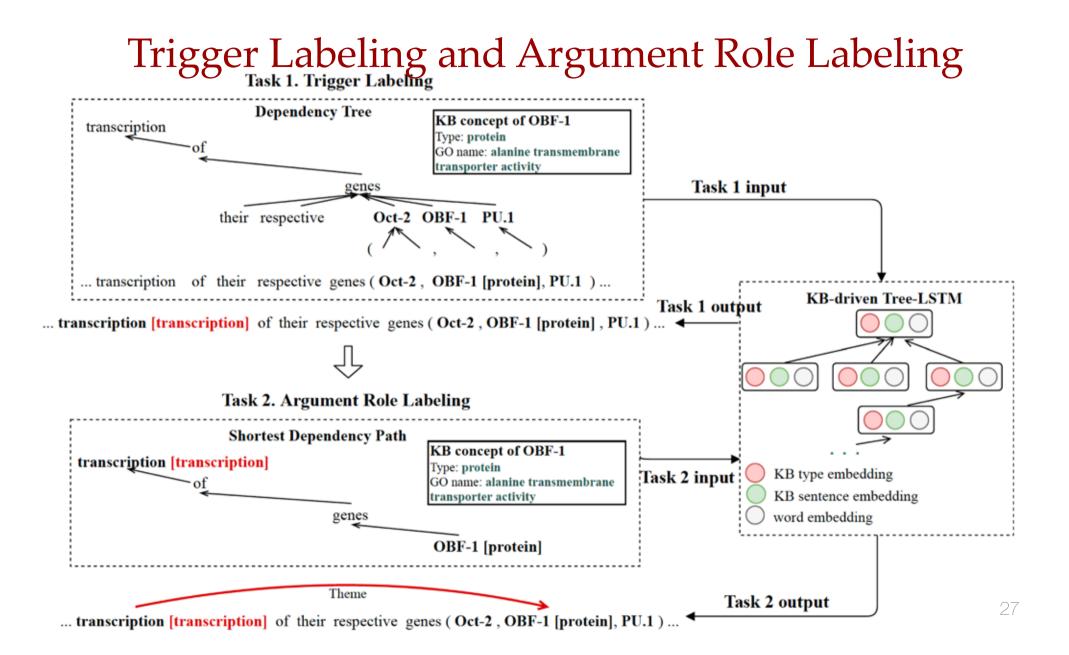
Supervised Event Extraction

task 1: Trigger labeling task 2: Argument role labeling

Reg Th Expression

Protein

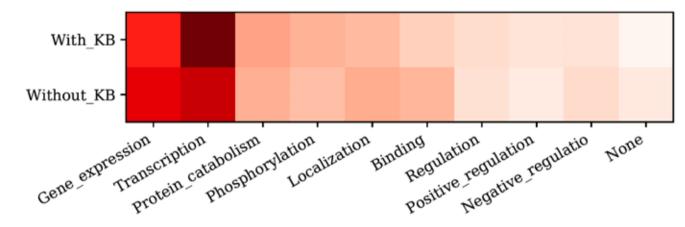

Pro


Therefore , it is important to understand the mechanisms which control the expression of MIP-1 alpha / GOS19 .

Event Type	Core Arguments	Event Type	Core Arguments	
Gene expression	Theme(Protein)	Regulation	Theme(Protein / Event), Cause(Protein / Event)	
Transcription	Theme(Protein)		Cause(Flotein / Event)	
Protein catabolism	Theme(Protein)	Positive regulation	Theme(Protein / Event), Cause(Protein / Event)	
Phosphorylation	Theme(Protein)			
Localization	Theme(Protein)	Negative regulation	Theme(Protein / Event), Cause(Protein / Event)	
Binding	Theme(Protein)+			

KB-driven Tree-LSTM

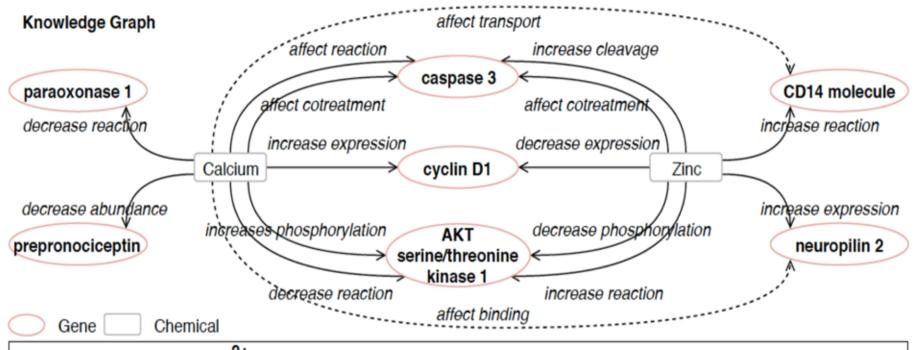
(Li et al., NAACl2019)



Event Extraction Results

• Results on Genia dataset (Kim et al., 2009, 2011; N'edellec et al., 2013)

System	n Event Type		Prec	F1
	Gene expression	74.35	87.24	80.28
	Transcription	69.54	82.31	75.39
	Protein catabolism	46.67	87.50	60.87
	Phosphorylation	81.62	87.28	84.36
KB-driven	Localization	59.69	80.28	68.47
Tree-LSTM	Simple total	72.62	85.95	78.73
TICC-LSTW	Binding	37.68	53.16	44.10
	Regulation	36.62	53.61	43.52
	Positive regulation	41.37	57.90	48.26
	Negative regulation	46.06	52.39	49.02
	Regulation total	41.73	55.73	47.72
	Event total	52.14	67.01	58.65
Simple total		71.22	83.41	76.83
Tree-LSTM	Binding	34.83	48.72	40.62
	Regulation total	39.78	53.54	45.64
	Event total	50.28	64.56	56.53
	Simple total	68.09	78.75	73.03
BiLSTM	Binding	38.49	43.05	40.65
	Regulation total	37.64	53.81	44.30
Event total		48.44	62.18	54.46


Impact of Background Knowledge on Event Extraction

... transcription [transcription] of their respective genes (Oct-2 [protein] , OBF-1 [protein], PU.1[protein]) ...

KB concept embedding "the function description positive regulation of transcription, DNAtemplated" provided by the biomedical entity **OBF-1** significantly enhances the probability of word transcription being predicted to a **Transcription** event type.

Link Prediction on top of Knowledge Extraction

Contextual Sentence: So, Ca²⁺possibly *promoted* caspases activation upstream of *cytochrome c* release, but inactivated caspase activity by calpain and/or fast depletion of ATP; whereas Zn²⁺ blocked the *activation ofprocaspase-3* with no visible change in the level of cytochrome c, and the block possibly resulted from its direct inhibition on caspase-3 enzyme.

Link Prediction: Graph Structure Encoder

 For each entity, perform self-attention (Veličković et al., 2018) and compute a weight distribution over its neighbors:

$$egin{aligned} &oldsymbol{e}_{i}^{'} = oldsymbol{W}_{e}oldsymbol{e}_{ij} &= oldsymbol{W}_{e}oldsymbol{e}_{ij} &= oldsymbol{L} \mathrm{e}_{i}^{'} \oplus oldsymbol{n}_{ij}^{'})) \ &oldsymbol{c}_{i}^{'} = \mathrm{Softmax}(oldsymbol{c}_{i}) \end{aligned}$$

Knowledge graph structure based context representation:

$$\boldsymbol{\epsilon}_{i} = \sigma\left(\sum c_{ij}^{\prime}\boldsymbol{n}_{ij}^{\prime}\right)$$

 Perform multi-head attention Ito capture various underlying relationships between each entity and its neighbors:

$$\tilde{\boldsymbol{e}}_i = [\boldsymbol{\epsilon}_i^0 \oplus \boldsymbol{\epsilon}_i^1 \oplus ... \oplus \boldsymbol{\epsilon}_i^M]$$

Link Prediction: Contextual Text Encoder

- Each entity *e* is also associated with a context description sentence
- Apply a bi-directional long short-term memory (LSTM) (Graves and Schmidhuber, 2005) network to get the encoder hidden states, then compute a bilinear attention weight for each token of the context sentence:

$$\mu_i = e^{\top} \cdot W_s \cdot h_i$$
$$\mu' = \operatorname{softmax}(\mu)$$
$$\hat{e} = \sum_{i=1}^l \mu'_i \cdot h_i$$

Gated combination:

$$\boldsymbol{g}_e = \sigma(\tilde{\boldsymbol{g}}_e), \quad \boldsymbol{e} = \boldsymbol{g}_e \odot \tilde{\boldsymbol{e}} + (1 - \boldsymbol{g}_e) \odot \hat{\boldsymbol{e}}$$

Repetition Removal

- Use a coverage loss to avoid any entity in reference input text or related entity receiving attention multiple times
- Design a new and simple masking method to remove repetition during the test time
 - Apply beam search with beam size 4 to generate each output
 - if a word is not a stop word or punctuation and it is already generated in the previous context, we will not choose it again in the same output

PaperRobot Output Example

Title	Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells				
Entities	Related: nasopharyngeal carcinoma; diallyl disulfide				
Output	Human (Neal et al., 2012)	System	Post-edited by Human		
Abstract	Human (Neal et al., 2012) Background: Maspin, a putative tu- mor suppressor that is down-regulated in breast and prostate cancer, has been associated with decreased cell motility. Snail transcription factor is a zinc fin- ger protein that is increased in breast cancer and is associated with increased tumor motility and invasion by induc- tion of epithelial-mesenchymal transi- tion (EMT). We investigated the molec- ular mechanisms by which Snail in- creases tumor motility and invasion utilizing prostate cancer cells. Meth- ods: Expression levels were analyzed by RT-PCR and western blot analyses. Cell motility and invasion assays were performed , while Snail regulation and binding to maspin promoter was ana- lyzed by luciferase reporter and chro- matin immunoprecipitation (ChIP) as- says. Results: Snail protein expression was higher in different prostate can- cer cells lines as compared to normal prostate epithelial cells.	Background: Snail is a multi- functional protein that plays an important role in the pathogene- sis of prostate cancer. However, it has been shown to be associ- ated with poor prognosis. The purpose of this study was to in- vestigate the effect of negatively on the expression of maspin in human nasopharyngeal carci- noma cell lines. Methods: Quan- titative real-time PCR and west- ern blot analysis were used to determine whether the demethy- lating agent was investigated by quantitative RT-PCR (qRT-PCR) and Western blotting. Results showed that the binding protein plays a significant role in the reg- ulation of tumor growth and pro- gression.	Post-edited by Human Background: Snail is a multifunctional protein that plays an important role in the pathogenesis of prostate cancer. It has been shown associated with poor prog- nosis. The purpose of this study is to investigate the negative effect of on the ex- pression of Maspin in hu- man nasopharyngeal car- cinoma cell lines. Meth- ods: Quantitative RT-PCR (<i>qRT-PCR</i>) and western blot analyses were used to deter- mine correlation of the two proteins expressions. Re- sults showed that the bind- ing protein plays a signifi- cant role in the regulation of tumor growth and progres- sion.		
Conclusion and Future work	Collectively, our results indicate for the first time that Snail can negatively reg- ulate maspin through direct promoter repression resulting in increased migra- tion and invasion in prostate cancer cells. This study reveals a novel mech- anism of how Snail may function and show the importance of therapeutic tar- geting of Snail signaling in future.	In summary, our study demon- strates that Snail negatively <i>in- hibited</i> the expression of Maspin in human nasopharyngeal car- cinoma cell lines and in vitro. Our results indicate that the com- bination of the demethylating agent might be a potential ther- apeutic target for the treatment of prostate cancer.	In summary, our study in vitro demonstrates that Snail negatively inhibits the ex- pression of Maspin in hu- man nasopharyngeal carci- noma cell lines. Our results further indicate that Maspin might be a potential thera- peutic target for the treat- ment of prostate cancer.		
New Title	Role of maspin in cancer (Berardi et al., 2013)	The role of nasopharyngeal car- cinoma in the rat model of prostate cancer cells	The role of <i>Maspin</i> in the rat model of <i>nasopharyn-</i> geal carcinoma cells		

It took the domain expert 40 minutes to edit 50 abstracts

BLEU1	BLEU2	BLEU3	BLEU4	ROUGE	TER
59.6	58.1	56.7	55.4	73.3	44.6

PaperRobot Ablation Test Results

Output	Without Memory Networks	Without Link Prediction	Without Repetition Removal
Abstract	Background: Snail has been reported	Background: Snail has been	Background: Snail is a major
	to exhibit a variety of biological func-	shown to be associated with	health problem in human ma-
	tions. In this study, we investigated	poor prognosis. In this study,	lignancies. However, the role
	the effect of negatively on maspin	we investigated the effect of	of Snail on the expression of
	demethylation in human prostate	negatively on the expression	maspin in human prostate can-
	cancer cells. Methods: Quantitative	of maspin in human prostate	cer cells is not well understood.
	real-time PCR and western blot analy-	cancer cells. Methods: Cells	The aim of this study was to
	sis were used to investigate the effects	were treated with a single dose	investigate the effect of Snail
	of the demethylating agent on the ex-	of radiotherapy for 24 h, and	on the expression of maspin in
	pression of the protein kinase (TF)	was used to investigate the sig-	human prostate cancer cells.
	gene promoter. Results: The results	nificance of a quantitative factor	Methods: The expression of the
	showed that the presence of a single	for the treatment of the disease.	expression of Snail and maspin
	dose of 50 μM in a dose-dependent	Results: The remaining controls	was investigated using quantita-
	manner, whereas the level of the BMP	showed a significant increase in	tive RT-PCR and western blot
	imipramine was significantly higher	the G2/M phase of the tumor	analysis. Results: The remaining
	than that of the control group.	suppressor protein (p<0.05).	overall survival (OS) and overall survival (OS) were analyzed.
Conclusion	In summary, our study demonstrated	In summary, our results demon-	In summary, our results demon-
and	that negatively inhibited the expres-	strate that negatively inhibited	strate that snail inhibited the ex-
Future	sion of the BMP imipramine in hu-	the expression of maspin in hu-	pression of maspin in human
work	man prostate cancer cells. Our find-	man prostate cancer cells. Our	prostatic cells. The expression
	ings suggest that the inhibition of	findings suggest that the combi-	of snail in PC-3 cells by snail,
	maspin may be a promising therapeu-	nation of radiotherapy may be	and the expression of maspin
	tic strategy for the treatment.	a potential therapeutic target for	was observed in the presence of
		the treatment of disease.	the expression of maspin.
New Title	Protective effects of homolog on hu-	The role of prostate cancer in	The role of maspin and maspin
	man breast cancer cells by inhibiting the Endoplasmic Reticulum Stress	human breast cancer cells	in human breast cancer cells

Repetition Removal Example

- Before: Background: The aim of this study was to compare the efficacy and safety of pain relief in patients with knee osteOArthritis (OA). Methods: This was a prospective cohort study of patients with knee osteOArthritis (OA). The primary endpoint was the proportion of patients with knee osteOArthritis (OA).
- After: Background: The aim of this study was to compare the efficacy and safety of pain in patients with knee osteOArthritis (OA). Methods: This was a prospective, multicentre, multi-center, non-interventional, observational, randomized, controlled trial. The primary endpoint was the proportion of the knee and joint symptom of the physical functioning, and to evaluate the relationship between the two groups. Patients were randomly assigned to receive either a single dose of 0.5 mg twice daily (n = 30) or placebo (500 mg/day) for 52 weeks.

Repetition Removal Example

- Before: Background: The aim of this study was to compare the clinical outcome of myocardial infarction (MI) in patients with acute ST segment elevation (MI). Methods: We retrospectively reviewed the clinical records of patients with acute ST segment elevation of acute ST elevation myocardial infarction (MI). Patients with acute ST elevation myocardial infarction (MI), and acute ST elevation myocardial infarction (MI), were included in this study. The primary endpoint was the proportion of patients with acute ST elevation myocardial infarction (MI) and coronary artery disease (CAD).
- After: Background The aim of this study was to compare the prevalence of myocardial infarction (MI) in patients with acute ST. Methods : The primary endpoint was the first time of the left anterior descending coronary artery , and to evaluate the clinical utility of Protocol . We performed a retrospective analysis of a prospective, randomized controlled trial. Patients were divided into two groups (n=6). The median follow-up period was defined as the presence of the right ventricle, and the level of cardiac catheterization was evaluated .

Data

• Background Knowledge Graph: papers from the PMC Open Access Subset

# papers	apers # entities	
1,678,060	30,483	875,698

• Paper Writing

Dataset		# papers	# avg entities	# avg predicted	
Dataset	Title-to- Abstract	Abstract-to-Conclusion and Future work	Conclusion and Future work-to-Title	in Title / paper	related entities / paper
Training	22,811	22,811	15,902	4.8	-
Development	2,095	2,095	2,095	5.6	6.1
Test	2,095	2,095	2,095	5.7	8.5

Automatic Evaluation Results

- Perplexity: How well the language model predicts a word
- METEOR: Compute the percentage of overlapped ngrams based on stemming and synonymy matching

Model	Title-to-Abstract		Abstract-to-Conclusion and Future Work		Conclusion and Future Work-to-Title	
	Perplexity	METEOR	Perplexity	METEOR	Perplexity	METEOR
Seq2seq (Bahdanau et al., 2015)	19.6	9.1	44.4	8.6	49.7	6.0
Editing Network (Wang et al., 2018b)	18.8	9.2	30.5	8.7	55.7	5.5
Pointer Network (See et al., 2017)	146.7	8.5	74.0	8.1	47.1	6.6
Our Approach (-Repetition Removal)	13.4	12.4	24.9	12.3	31.8	7.4
Our Approach	11.5	13.0	18.3	11.2	14.8	8.9

Turing Test

- Human Subject Passing Rates (%) = Percentages show how often a human judge chooses our system's output over human's when it is mixed with a human-authored string
- If the output strings (e.g., abstracts) are based on the same input string (e.g., title), the Input condition is marked "Same", otherwise "Different"

Task	Input		Output	Domain Expert	Non-expert
End-to-End	Human Title	Different	Abstract (1st)	10	30
	I fullan The	Same		30	16
	System Abstract	Different	Conclusion and	12	0
		Same	Future work	8	8
	System Conclusion and	Different	Title	12	2
	Future work	Same		12	25
	System Title	Different	Abstract (2nd)	14	4
Diagnostic	Human Abstract	Different	Conclusion and	12	14
		Same	Future work	24	20
	Human Conclusion and	Different	Title	8	12
	Future work	Same	Inte	2	10

Which Abstract is Written by PaperRobot?

A. Background The aim of the present study was to investigate the effect of Cnidium Lactone on the expression of Mutant and histone deacetylase (HDAC) inhibitors in human prostate cancer (PC). Material/Methods We evaluated the effects of Prostate Cancer on cell proliferation and invasion in vitro and in vivo. Cells were incubated with a single dose of 25 (50 mg/kg), and 10 (100 mg/kg/day), respectively. The primary endpoint was the ability of the mRNA and protein levels of transcription factor (VEGF).

B. Background Cnidium Lactone is a natural coumarin compound that can inhibit a variety of cancer cell proliferation and induce cancer cell apoptosis. This experiment investigated the effect of cnidium Lactone on molecular marker expression in prostate cancer nude mice to study its effect in inducing apoptosis. Material/Methods We randomly and equally divided 30 male BALB/C nude mice inoculated with human prostate cancer cells PC-3 into a negative control group, a cyclophosphamide group (500 mg/Kg), and cnidium Lactone groups at 3 doses (280 mg/Kg , 140 mg/Kg , and 70 mg/Kg). The mice were weighed at 2 weeks after administration .

Which Abstract is Written by PaperRobot?

- A. The use of nanoparticles in medicine is an attractive proposition. In the present study, Zinc oxide and silver nanoparticles were evaluated for their antidiabetic activity. Fifty male albino rats with weight 120 ± 20 and age 6 months were used. Animals were grouped as follows : control ; did not receive any type of treatment, diabetic; received a single intraperitoneal dose of streptozotocin (100 mg/kg), diabetic + Zinc oxide nanoparticles (ZnONPs), received single daily oral dose of 10 mg/kg ZnONPs in suspension , diabetic + silver nanoparticles (SNPs); received a single daily oral dose of SNP of 10 mg/kg in suspension and diabetic + insulin; received a single subcutaneous dose of 0.6 units/50 g body.
- B. Rationale : Aliskiren is a rare disease characterized by a variety of hypertensive disorders. The aim of the present study was to evaluate the effectiveness of aliskiren, pharmacodynamics, and clinical outcomes in patients with hypertension. Methods We reviewed the medical records of ambulatory blood pressure (BP), kinetics, and high-sensitivity C-reactive protein (CRP) levels in the treatment of corneal tissue. We performed a retrospective review of the English literature search of PubMed, EMBASE, and Cochrane Library databases . The primary outcome was established by using a scoring system.

 A. In summary , the present study demonstrated that BBR could suppress tubulointerstitial fibrosis in NRK 52E cells . In addition , the effects of action on the EMT and HG of DN in the liver cell lines , and the inhibition of renal function may be a potential therapeutic agent for the treatment of diabetic mice . Further studies are needed to elucidate the mechanisms underlying the mechanism of these drugs in the future .

B. We characterised KGN cells as a malignant tumour model of GCTs.
Continuously cultivated KGN cells acquire an aggressive phenotype, confirmed by the analysis of cellular activities and the expression of biomarkers. More strikingly, KGN cells injected under the skin were metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanisms of metastasis.

- A. In reproductive-age women with ovarian endometriosis , the transcriptional factor
 SOX2 and NANOG are over expression . Future studies is need to determine their role in pathogenesis of ovarian endometriosis.
- B. In summary , the present study demonstrated that Hydrogen alleviates neuronal apoptosis in SAH rats . These results suggest that the Akt/GSK3β signaling pathway may be a novel therapeutic target for the treatment of EBI .

- A. Our novel data strongly suggest that BMP-2 signaling modulates SOST transcription in OA through changes in Smad 1/5/8 binding affinity to the CpG region located upstream of the TSS in the SOST gene, pointing towards the involvement of DNA methylation in SOST expression in OA.
- B. In conclusion , the present study demonstrated that DNA methylation and BMP-2 expression was associated with a higher risk of developing Wnt/β-catenin pathway in OA chondrocytes . These results suggest that the SOST of Wnt signaling pathways may be a potential target for the treatment of disease .

- A. VWF is an autocrine/paracrine effector of signal transduction and gene expression in ECs that regulates EC adhesiveness for MSCs via activation of p38 MAPK in ECs.
- B. In conclusion , our study demonstrated that HOTAIR transcript expression in NSCLC cells. These results suggest that the overexpression of metastasis may play a role in regulating tumor progression and invasion. Further studies are needed to elucidate the molecular mechanisms involved in the development of cancer.

Which Title is Written by PaperRobot?

 A. The role of cancer stem cells to trastuzumab-based and breast cancer cell proliferation, migration, and invasion

 B. Long-term supplementation of decaffeinated green tea extract does not modify body weight or abdominal obesity in a randomized trial of men at high risk for Prostate cancer

Which Title is Written by PaperRobot?

 A. Efficacy and Safety of Artesunate in the Treatment of Uncomplicated Malaria: a Systematic Review and Meta-analysis

 B. Low RBM3 Protein Expression Correlates with Clinical Stage, PrognOStic Classification and Increased Risk of Treatment Failure in Testicular Non-Seminomatous Germ Cell Cancer

Remaining Challenges: Human output is usually more vivid

- Human: "Does HPV play any role in the initiation or prognosis of endometrial adenocarcinomas ?"
- System: "The role of HPV in the treatment of endometrial adenocarcinomas"

Remaining Challenges: Human output is usually more concrete

- Human written title:
- "etumorType , An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood" create new entity abbreviations such as etumorType in this example
- System written title:
- Gastrointestinal Stromal tumor initiation : A Review of the Literature .

Did it Work for NLP?

- (Fortunately) we are still not publishing enough...
- The language model is not able to effectively copy out-of-vocabulary words and thus the output is often too generic
 - Title: Statistics based hybrid approach to Chinese base phrase identification
 - Abstract: This paper describes a novel approach to the task of Chinese-base-phrase identification. We
 first utilize the solid foundation for the Chinese parser, and we show that our tool can be easily extended
 to meet the needs of the sentence structure.
- The types of entities and relations in the NLP domain are rather coarse-grained, which
 often leads to inaccurate prediction of related entities
 - Title: Extracting molecular binding relationships from biomedical text
 - Abstract: In this paper, we present a novel approach to the problem of extracting relationships among the prolog program. We present a system that uses a macromolecular binding relationships to extract the relationships between the abstracts of the entry. The results show that the system is able to extract the most important concepts in the prolog program.

Ongoing Work: ReviewRobot

• A recent EMNLP2019 review

Reasons to accept

1. Idea is interesting and convincing. 2, Solid experiments are conducted.

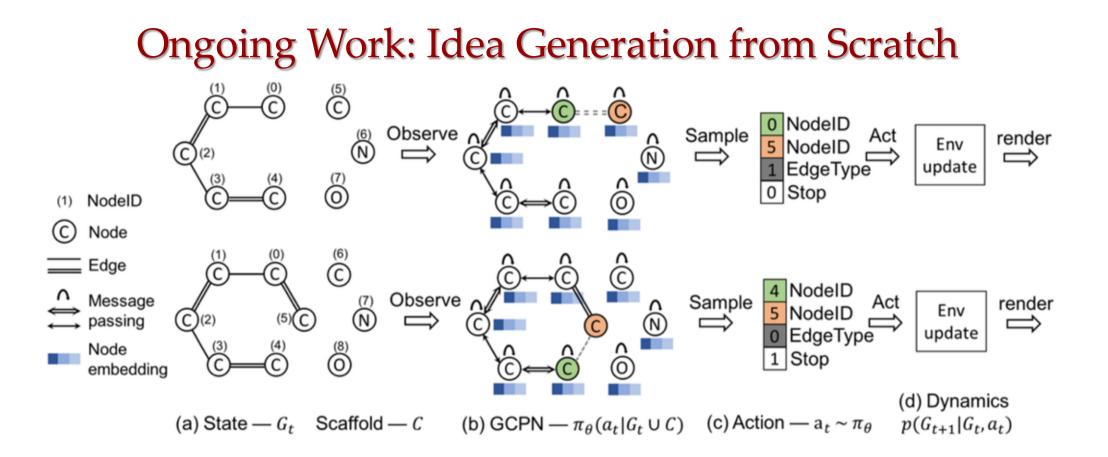
Reasons to reject

1. Idea is too simple and tricky.

- Half of NIPS2016 papers would have been rejected if reviews are done by a different group
- Low human performance bar; should be easy to pass Turing Test than PaperRobot!

<u>J R Soc Med</u>. 2006 Apr; 99(4): 178–182. doi: <u>10.1258/jrsm.99.4.178</u> PMCID: PMC1420798 PMID: <u>16574968</u>

Peer review: a flawed process at the heart of science and journals Richard Smith


Author information > Copyright and License information <u>Disclaimer</u>

ReviewRobot: Paper Content based Baseline

- ACL 2017 from PeerRead dataset (Kang et al., 2018)
 - Train/dev/test: 248/12/15, score scale 1-5
 - Input: uncased whole paper; Output: aspect score

Model	Category	Average inter annotator agreement	System Accuracy
GRU with attention mechanism (without	Recommendation	0.7619	0.7143
	Substance	0.8095	0.8571
	Appropriateness	1.000	0.8571
	Comparison	1.000	0.4286
	Soundness	1.000	0.1429
pretrained word	Originality	1.000	0.5714
embeddings)	Clarity	0.8810	0.4286
	Impact	1.000	0.8571
	Reviewer confidence	0.9048	0.5714

53

- (Leskovec et al., 2019)
- Generating graph from a starting node with graph RNN pic ("name tagging" → CRFs --> LSTM → ACE data)

Takeaways

- Biomedical domain is a promising application area for IE; some recent progress relies on
 - Capturing complex sentence structures
 - Incorporating properties in ontologies
 - Better semantic representations and neural network models
- PaperRobot is merely an assistant to help scientists speed up scientific discovery and production
 - Conducting experiments is beyond her scope, and each of her current components still requires human intervention
- Future Directions
 - Knowledge reasoning over complex and implicit contexts
 - Combine symbolic structured representations and distributional representations when semantic parsing for the domain is more mature
 - Incorporate more and deeper background knowledge from ontologies and literature (description, hierarchy, etc.)
 - Encode more reliability signals beyond frequency to enhance robustness

Thank you

https://github.com/EagleW/PaperRobot

