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Information Overload: Multimedia Multilingual Data
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Information Extraction: turn unstructured 
data to structured information
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Relation Extraction

Event Extraction (Trigger Labeling + Argument Role Labeling)
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▪ Re-trainable Systems: http://blender02.cs.rpi.edu:3300/elisa_ie/api
▪ Data and Resources: http://nlp.cs.rpi.edu/wikiann/
▪ Demos: http://blender02.cs.rpi.edu:3300/elisa_ie http://blender02.cs.rpi.edu:3300/elisa_ie/heatmap

Applications: Disaster Relief

http://blender02.cs.rpi.edu:3300/elisa_ie/api
http://nlp.cs.rpi.edu/wikiann/
http://blender02.cs.rpi.edu:3300/elisa_ie
http://blender02.cs.rpi.edu:3300/elisa_ie/api


Applications: Event Recommendation

https://blender04.cs.rpi.edu/~lud2/video_recommendation_demo2019/navigation_dark.html



Applications:  Ukraine Event and Moral Value Map
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http://162.243.120.148:8080/

• Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-direction, 
Simulation, Tradition and Universalism (Schwartz, 2012)



Expert consumers 
define what to 

link/extract

Human Annotators 
annotate a large amount 

of documents

Researchers design 
features/rules, train 
supervised learning 

models

• High Cost: requires 
manual clean 
annotations for 
500  documents

• Poor Portability: 
e.g., only covers 41 
relation types and 
33 event types

• Limited to a certain 
domain, genre, 
language, and data 
modality
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English IE: Expensive but Generally Happy



English doesn’t deserve to be the center of language universe

• 6000+ living languages, 300+ languages have digital news data
• Certain information is often reported predominantly in local news in low-resource 

languages
• e.g., the vast majority of Physical-Located relations and Meeting events involving Aung San Suu Kyi are 

only reported locally in Burmese news
• e.g., language barrier was one of the main difficulties faced by humanitarian workers responding to 

the Ebola crisis in 2014

• Publicly available gold-standard annotations for IE exist for 
only a few languages
• Annotations for edge (relation and event) extraction are more

expensive than node (entity) extraction because relations/
events are structured and require a rich label space – not 
suitable for crowd-sourcing
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Enhance Quality with deep knowledge 
acquisition and reasoning

Transfer knowledge across 
domain/genre/language/d
ata modality

One Possible Solution: Share and Transfer



Cross-lingual Node (Entity) Transfer
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• Leverage Language-Universal Non-Conventional Linguistic Resources
• Cross-lingual Embedding Representations

• Cluster-consistent embedding: avoid using bi-lingual dictionaries or parallel corpora
• Joint Entity and Word embedding
• Cross-lingual language modeling for contextualized embedding

• Cross-lingual Transfer Learning
• Multi-task Multi-lingual transfer learning
• Adversarial learning to select language-universal resources and features

• Allow non-speakers to annotate any language



Share: Multi-lingual Cluster-consistent 
Common Space Construction
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▪ Our new hypothesis: Cluster distribution tends to be consistent 
across languages (Huang et al., EMNLP2018)



• Code-switch cross-lingual entity/word data generation

• Use English entities as anchor points to learn a mapping (rotation matrix) W
which aligns distributions in IL and English
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Share: Cross-lingual Joint Entity and Word Embedding Learning
▪ (Pan et al., DeepLo2019)



Cross-lingual Edge (Relation and Event Argument) Transfer

• (Subburathinam et al., EMNLP2019)
• Hypothesis: Relational facts are typically expressed by identifiable patterns 

which are consistent across languages (Lin et al., 2017)
• Language-universal symbolic representations
• POS tagging and dependency parsing are available for 84 languages (Nivre et al., 

2018)
• Entity extraction is available for 282 languages (Pan et al., 2017)

• Language-universal distributional representations
• multi-lingual word embedding is available for 44 languages (Bojanowski et al., 2017; 

Joulin et al., 2018)
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Toward more Structured Representations
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Graph Convolutional Networks (GCN)  Encoder
• Extend the monolingual design (Zhang et al., 2018) to cross-lingual

• Convert a sentence with N tokens into N*N adjacency matrix A
• Node: token, each edge is a directed dependency edge

• Initialization of each node’s representation

• At the kth layer, derive the hidden representation of each node from the representations of 
its neighbors at previous layer
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Word embedding POS tag Dependency relation Entity type



Application on Relation Extraction

• Task: Classify each pair of entity mentions into one of pre-defined relation types or 
NONE

• Max-pooling over the final node representations to obtain representations for 
sentence and two entity mentions, and concatenate them

• A softmax output layer for relation type classification
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Application on Event Argument Extraction

• Task: Classify each pair of event trigger and entity mentions into one of pre-defined 
event argument roles or NONE

• Max-pooling over the final node representations to obtain representations for 
sentence, trigger and argument candidate, and concatenate them

• A softmax output layer for argument role labeling
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Overall Performance
• Relation Extraction

• Event Argument Extraction
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Much better than 
state-of-the-art on 

cross-lingual transfer  
(47.7%, Hsi et al., 

2016) 



Comparison with Supervised Approach
• Chinese Event Argument Extraction
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•We produce and consume news content simultaneously 
through different media

•By randomly checking 100 multimedia documents from Voice 
of America, 34% images contain visual objects that serve as 
event arguments which are not mentioned in surrounding texts

Ongoing Work: Cross-media Event Structure Transfer

Vote_? = soldier TransportPerson_Instrument = stretcher



Multimedia Common Space Construction

• Treat Image/Video as a foreign language
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Visual
Events

airstrikes [Conflict.Attack]
raids [Conflict.Attack]

Visual 
Arguments

Target airplane
Target vehicle

Output: Image-related Events & Visual Argument Roles

• Input: News Article & Events

In March , Turkish forces escalated attacks
[Conflict.Attack] on the YPG in northern Syria , forcing
U.S. to deploy [Movement.TransportPerson] a small number
of forces in and around the town of Manbij to the northwest
of Raqqa to “deter” Turkish - SDF clashes and ensure the
focus remains on Islamic State. Meanwhile, Raqqa is being
pummeled by airstrikes [Conflict.Attack] mounted by U.S.-
led coalition forces and Syrian warplanes. Local anti-IS
activists say the air raids [Conflict.Attack] fail to distinguish
between military and non-military targets …

airplane
vehicle

Input: Image & Visual Objects

A New Task: Multimedia Event Extraction



Multi-media Structured Common Space Construction
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Weakly Aligned Structured Embedding (WASE) 
-- Training Phase (Common Space Construction)
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Text SpaceImage Space Structured Multimedia Common Space
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Weakly Aligned Structured Embedding (WASE) 
-- Training Phase (Common Space Construction)
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WASE 
(text)

Event argument candidates Event trigger candidates

WASE 
(img)

Event trigger candidateEvent argument candidates

Thai opposition 
protesters attack 
a bus carrying 
pro-government 
Red Shirt 
supporters on their 
way to a rally at a 
stadium in 
Bangkok



Weakly Aligned Structured Embedding (WASE) 
-- Testing & Training Phase
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Experimental Results

• Compare with text-only extraction (ACE) and image-only extraction (Situation 
Recognition)
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Method
Text Event Trigger Labeling Visual Argument Role Labeling

P(%) R(%) F1(%) P(%) R(%) F1(%)

JMEE (Text-only) [1] 49.12 72.64 58.61 - - -

FC_Graph(Vision-only) [2] - - - 19.15 19.15 19.15

Multimedia Flat Embedding 56.08 62.03 58.91 32.48 34.24 33.34

WASE 59.55 66.43 62.80 32.51 34.29 33.36

[1] Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018a. Jointly multiple events extraction via attention-
based graph information aggregation. EMNLP 2018
[2] Ruiyu Li, Makarand Tapaswi, Renjie Liao, Jiaya Jia, Raquel Urtasun, and Sanja Fidler. 2017. Situation 
recognition with graph neural networks. ICCV 2017



Compare to State-of-the-art Cross-media Flat Representation

uBaseline: 
uEvent: Justice:Arrest-Jail
uRoles:   

uNone

uOur Approach:
uEvent: Conflict.Attack
uRoles:   

u Instrument = weapon

uBaseline: 
uEvent: Justice:Arrest-Jail
uRoles:   

uAgent = man

uOur Approach:
uEvent: Justice:Arrest-Jail
uRoles:   

uPerson = man

uBaseline: 
uEvent: Justice:Arrest-Jail
uRoles:   

uEntity = man

uOur Approach:
uEvent: Conflict:Demonstrate
uRoles:   

uEntity = man



Promising Progress
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2015 2019

Portability # Languages for EDL and Event 
Extraction

1-3 300

# Entity types 5 16,000

# Relation types (English) 41 2,000

# Event types (English) 33 1,000

Quality (Low-
resource
Languages 
without gold 
standard 
annotations)

Name Tagging 0% Up to 76% F-score

Cross-lingual Entity Linking Up to 16% absolute improvement in accuracy

Development Time Half a year 1-10 hours

Cost Supervised models based 
on 500 fully annotated 
documents

No manual annotation 
required for new 
language/domain



• The final Perahera of the Ruhunu Kataragama Maha
Devalaya will be held today.

• In the communiqué the education ministry has cited as a 
cases in point several instances like the application by a 
doctor transferred to Bemmulla in Gampaha for admission of 
his child to the Colombo D . S . Senanayake Vidyalaya.

• The navy media unit stated that they suspect that the Kerala 
Ganja Cannabis was brought from India via the mainland

• When we come back media speculation run amuck over 
possible indictments at sixteen hundred Pennsylvania and 
the President 's scripted session with troops in Iraq .
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Remaining Challenges: Acquire background knowledge
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Remaining Challenges: Cross-scenario Transfer through 
Complex Event Schema Induction



Ongoing Research Project: Let’s Write a History Book!
▪ History is written by the victors
▪ Entity-centric knowledge base is much easier to construct than event-centric one

▪ Who is Barack Obama’s wife?
▪ Requires exhaustive search and information aggregation

▪ How many people died in 911? Who are they?

▪ Multi-view verification
▪ What happened in 1989 Tiananmen Square?
▪ What happened in Hong Kong Protest 2019?

▪ It’s international human right to know 
what happened in the history

▪ We aim to create a history book automatically
so it can be more complete and authentic 
than human created ones
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What will such a History Book look like?
▪ Each chapter looks like a Wikipedia page

▪ The description is organized by multimedia timeline with 
detailed source and evidence information, links to 
original news articles

▪ Detailed participants (arguments) and their roles, and 
their connections and relations

▪ Infobox shows event-event relations: temporal, 
causal and hierarchical

▪ Building blocks
▪ Open-domain Multilingual Multimedia Event Extraction
▪ Cross-document Event Coreference Resolution and 

Ranking
▪ Event Schema Induction and Event-Event Relation 

Extraction
▪ Cross-source Information Verification and Truth Finding
▪ Abstract Summarization for Event Description

▪ Never-ending updated over time; put up to the 
wild for human editing and curation
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Thank You
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Some IE Demos
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Cross-lingual Entity Discovery and Linking for 
287 Languages

37

▪ (Pan et al., ACL2017)



https://blender04.cs.rpi.edu/~lim22/gaia/GAIA_arg.html

Cross-document Event Tracking

https://blender04.cs.rpi.edu/~lim22/gaia/GAIA_arg.html


• https://blender04.cs.rpi.edu/~lim22/entity_demo/aida_index.html

Cross-document Entity Relation Tracking

https://blender04.cs.rpi.edu/~lim22/entity_demo/aida_index.html


Ukraine Event and Moral Value Map
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http://162.243.120.148:8080/

• Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-direction, 
Simulation, Tradition and Universalism (Schwartz, 2012)
http://162.243.120.148:8080/



Event Recommendation

Cross-media coreference and inference

41
https://blender04.cs.rpi.edu/~lud2/video_recommendation_demo20
19/navigation_dark.html

https://blender04.cs.rpi.edu/~lud2/video_recommendation_demo2019/navigation_dark.html


A MedChem spokesman said the products contribute about
a third of MedChem's sales and 10% to 20% of its earnings

MedChem spokesman said ...
Word

Embedding

LSTM Encoder

ORG O OCRF

Context-only
Features

Rare word. Its embedding is
unreliable. Rely more on
surface and context clues.

Common word. Its
word embedding
should be reliable.

Reliability
Signals

Character-level
Representation

Gate
Word Representation Level Feature Composition

Balance word- and character-level representations.

Feature Extraction Level Feature Composition

Balance original hidden states and additional context-
only features.

Node (Entity) Extraction: Token Labeling 
with Sequence as Context
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Edge (Relation and Event) Extraction: Node 
Pair Classification with Graph Context

Graph Convolutional Network



Previous Work
• Multilingual common space construction makes use of linear mappings (Mikolov et al., 2013; Rothe et al., 2016; 

Zhang et al., 2016; Baroni et al., 2015; Xing et al., 2015; Smith et al., 2017) or canonical correlation analysis (CCA) 

(Ammar et al., 2016; Faruqui and Dyer, 2014; Lu et al., 2015) to transfer surface features across languages

• Cross-lingual IE work mainly focuses on sequence labeling (name tagging) (Mayhew et al., 2017; Lin et al., 2018; 

Huang et al., 2019) which is not significantly influenced by word order
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https://blender04.cs.rpi.edu/~lim22/gaia/GAIA_arg.html

Applications: Event Tracking

https://blender04.cs.rpi.edu/~lim22/gaia/GAIA_arg.html


Transfer: Unsupervised Adversarial Training

Word-level
adversarial transfer

Sequence-level
adversarial transfer Bi-LSTM-CRF Name Tagger

...

...

Target Language

Source Language

...

Linear Projection

Word Discriminator Sequence Feature
Encoder

Context
Encoder 

CRF Name
Tagger 

Sequence
Discriminator

C
onvolutional

N
eural N

etw
orks

B­PER 

I­PER 

O 

... 

O 

B­GPE 

Solution: apply unsupervised adversarial training to extract language-agnostic features

▪ (Huang et al., NAACL2019)
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Name Tagging Performance

• Russian name tagging F-score; English to help Russian

Monolingual Embedding

Cross-lingual Embedding



• https://blender04.cs.rpi.edu/~lim22/entity_demo/aida_index.html

Applications: Entity Relation Tracking

https://blender04.cs.rpi.edu/~lim22/entity_demo/aida_index.html


Weakly Aligned Structured Embedding (WASE) 
-- Training Phase (Common Space Construction)
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Thai opposition 
protesters attack 
a bus carrying 
pro-government 
Red Shirt 
supporters on their 
way to a rally at a 
stadium in 
Bangkok

WASE 
(text)

Event argument candidates Event trigger candidates

WASE 
(img)

Event trigger candidateEvent argument candidates

C
o

-A
tte

ntio
n



Weakly Aligned Structured Embedding (WASE) 
-- Training Phase (Common Space Construction)
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WASE 
(text)

Event argument candidates Event trigger candidates

WASE 
(img)

Event trigger candidateEvent argument candidates
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Thai opposition 
protesters attack 
a bus carrying 
pro-government 
Red Shirt 
supporters on their 
way to a rally at a 
stadium in 
Bangkok



Applications:  County-Level Moral Concerns
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▪ (Mooijman et al., Nature Human Behavior 2018, June Cover)


