Self-Supervised Natural Language Processing

William Wang

Assistant Professor of Computer Science

UC SANTA BARBARA

NLP and State-of-the-Arts

- Language modeling style pre-training took over in 2018.
 - $P(w_n | w_1, w_2 ... w_{n-1})$
 - Elmo (Peters et al., NAACL Best Paper 2018)
 - BERT (Devlin et al., NAACL Best Paper 2019)
- Wait, but isn't that Tomas Mikolov's 2010 thesis already told us about the effectiveness of RNNLM?
- And we know about LMs for more than 20 years, so what's new?
- One thing we didn't know very well about is the transfer learning capabilities of pre-trained LMs.

Connections to Low-Level Self-Supervised Learning in Vision

• The idea of language modeling, i.e., predicting the next word using previous words, or remove a word and use context to predict the target word...

is fairly similar to

- Randomly remove a patch, and predict the relative position of the missing patch (Doersch et al., ICCV 2015).
- Remove an object from an image, and use context to predict the object.
- Remove key frames in videos, and use context to predict the missing frame.

But How do We Get to Task-Level Self-Supervised Learning like AlphaGo Zero?

Three Areas of Machine Learning

Our Work

- Unlike games, we show that modeling the complex objective and diverse answers is the key to task-level SSL in Lang + Vision.
- Combined with pre-trained KB embedding models, we show how to reason with DRL for explainable knowledge graph reasoning.

Outline

- Motivation
- Inverse RL for Visual Story Telling
- Learning to Reason with DeepPath
- Conclusion
- Other Research Interests

No Metrics are Perfect:

From Optimizing End Metrics (e.g., BLEU/ROUGE) to Reward Learning

(Wang, Chen et al., ACL 2018)

Existing Automatic Evaluation Metrics for Language Generation

- Input: generation candidate and human reference(s).
- Output: a score.
- Metrics:
 - BLEU: precision-driven n-gram overlap.
 - ROUGE: recall-driven n-gram overlap.
 - METEOR: weighted fl n-gram overlap.
 - CIDEr:TF-IDF + cosine similarity.

Pop Quiz: assuming reasonable references, what is the METEOR score of this sample output?

"We had a great time to have a lot of the. They were to be a of the. They were to be in the. The and it were to be the. The, and it were to be the."

Average METEOR score: 40.2 (SOTA model: 35.0)

How about this one?

"I had a great time at the restaurant today. The food was delicious. I had a lot of food. I had a great time."

BLEU-4 score: 0

No Metrics Are Perfect: Adversarial Reward Learning (ACL 2018)

- Task: visual storytelling (generate a story from a sequence of images in a photo album).
- Difficulty: how to quantify a good story?
- Idea: given a policy, learn the reward function.

No Metrics Are Perfect: Adversarial Reward Learning (Wang, Chen et al., ACL 2018)

Baseline: MIXER (Ranzato et al., ICLR 2016)

• Optimize the cross-entropy loss and the BLEU score directly using REINFORCE (Williams, 1992).

AREL Storytelling Evaluation

• Dataset: VIST (Huang et al., 2016).

Turing Test

When will IRL work?

- When the optimization target is complex.
- There are no easy formulations of the reward.
- If you can clearly define the reward, don't use IRL and it will not work.

Outline

- Motivation
- Reinforced Semi-Supervised Learning
- Inverse RL for Visual Story Telling
- Learning to Reason with DeepPath
- Conclusion
- Other Research Interests and Goals

Reasoning:

Can DRL learn interpretable reasoning paths for knowledge base completion?

(Xiong et al., EMNLP 2017)

Reasoning on Knowledge Graph

DeepPath: DRL for KG Reasoning (Xiong et al., EMNLP 2017)

Components of MDP

- Markov decision process < S, A, P, R >
 - *S*: continuous states represented with embeddings
 - *A*: action space (relations)
 - $P(S_{t+1} = s' | S_t = s, A_t = a)$: transition probability
 - *R*(*s*, *a*): reward received for each taken step
- With pretrained KG embeddings

•
$$s_t = e_t \oplus (e_{target} - e_t)$$

• $A = \{r_1, r_2, \dots, r_n\}$, all relations in the KG

Reward Functions

Global Accuracy

 $r_{\text{GLOBAL}} = \begin{cases} +1, & \text{if the path reaches } e_{target} \\ -1, & \text{otherwise} \end{cases}$

• Path Efficiency

$$r_{\rm EFFICIENCY} = \frac{1}{length(p)}$$

• Path Diversity

$$r_{\text{diversity}} = -\frac{1}{|F|} \sum_{i=1}^{|F|} \cos(\mathbf{p}, \mathbf{p}_i)$$

Training with Policy Gradient

- Pre-training with BFS-selected paths.
- Monte-Carlo Policy Gradient (REINFORCE, William, 1992)

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{a \in \mathcal{A}} \pi(a|s_t; \theta) \nabla_{\theta} \log \pi(a|s_t; \theta) R(s_t, a_t)$$
$$\approx \nabla_{\theta} \sum_{t} \log \pi(a = r_t | s_t; \theta) R(s_t, a_t)$$

 $R(s_t, a_t) = \lambda_1 r_{global} + \lambda_2 r_{efficiency} + \lambda_3 r_{diversity}$

Link Prediction Result

Tasks	PRA	Ours	TransE	TransR
worksFor	0.681	0.711	0.677	0.692
atheletPlaysForTea m	0.987	0.955	0.896	0.784
athletePlaysInLeagu e	0.841	0.960	0.773	0.912
athleteHomeStadiu m	0.859	0.890	0.718	0.722
teamPlaysSports	0.791	0.738	0.761	0.814
orgHirePerson	0.599	0.742	0.719	0.737
personLeadsOrg	0.700	0.795	0.751	0.772
Overall	0.675	0.796	0.737	0.789

Mean average precision on NELL-995

Qualitative Analysis

Example Paths

Conclusion

- We show that inverse reinforcement learning is a secret weapon for addressing the diverse and complex nature of language generation problems.
- We introduce an interpretable path-based knowledge graph reasoning framework DeepPath.

Self-Supervised Learning Beyond Word-Level Representation Learning (Wang et al., ACL 2019)

Masked Paragraph	Last week, I went to attend a one-day meeting. I booked the flight in advanced. [masked sentence] The earliest next flight will be a few days later. I had to use the online discussion instead.
Candidate Sentences	But the flight was cancelled due to the weather. But I lost my passport. The meeting was cancelled. The weather is good today.

Reinforced Conditional Variational Autoencoder for Generating Emotional Sentences (Zhou and Wang, ACL 2018) https://arxiv.org/abs/1711.04090

Controlling Emotions for RC-VAE Generated Sentences

User's Input	sorry guys , was gunna stream tonight but i 'm still feeling sick		
Designated Emojis			
Generated by Seq2Seq Baseline	i 'm sorry you 're going to be missed it	i 'm sorry for your loss	
Generated By MojiTalk	hope you are okay hun !	hi jason , i 'll be praying for you	

Other Research Highlights: Interdisciplinary and Socially Responsible Data Science

Language, Vision, Speech, & Dialog

- Image and Video Captioning and Summarization
 - Zero-Shot Video Captioning (AAAI 2019)
 - Hierarchical RL for video captioning (CVPR 2018)
 - Local and global cross-modal attention for multimodal video captioning w. speech, language, vision (NAACL 2018)
 - Multimodal summarization of events (NAACL 2016)
 - Generating memes and humor (NAACL 2015)
- Cross-lingual transfer learning for dialog tracking (EMNLP 2018)
- Semantically-Conditioned Dialogue Generation via Disentangled Self-Attention (ACL 2019)

Deep Reinforcement Learning for Language + Vision + Robotics

- Combining modal-based and model free RL for vision-language navigation (ECCV 2018)
- Scheduled Policy
 Optimization: Imitation
 Learning + RL (IJCAI 2018)
- Self-supervised imitation learning for vision-language navigation (CVPR 2019 Oral, Best Student Paper)

Instruction

Turn right and head towards the *kitchen*. Then turn left, pass a *table* and enter the *hallway*. Walk down the hallway and turn into the *entry way* to your right *without doors*. Stop in front of the *toilet*.

Initial Position
Target Position
Demonstration Path A

Executed Path B
 Executed Path C

Local visual scene

Socially Responsible NLP

- Hate speech analysis, detection, and intervention
 - Hate speech intervention (EMNLP 2019)
 - Deciphering hate symbols (NAACL 2019)
 - Representation learning for detection (NAACL 2018)
 - Linguistic analysis of hate speech (ICWSM 2018)
 - Hate group and topic detection (EMNLP 2018)
- Fake news detection and diffusion
 - LIAR benchmark dataset (ACL 2017, 200+ citations)
 - Predicting the spread of misinformation

Machine Learning / NLP + X

- ML/NLP + Politics
 - Political ideology detection (NAACL 2018)
- ML/NLP + Statistics + Finance
 - Semiparametric Gaussian Copula Regression Model for Predicting Financial Risks (ACL 2014)
- ML/NLP + Math
 - Riemannian Normalizing Flows and Wasserstein VAE (NAACL 2019)
- ML/NLP + Marketing
 - Structured learning for computational branding analytics (EMNLP 2013)
- ML/NLP + Law + History
 - Mixed-effect models for studying legal opinions (ACL 2012)

Open Challenges

• VaTeX Vision-and-Language Dataset (ICCV 2019, Oral)

Open Challenges

• TweetQA: social media question answering.

Passage: Oh man just read about Paul Walkers death. So young. Ugggh makes me sick especially when it's caused by an accident. God bless his soul. – Jay Sean (@jaysean) December 1, 2013

Q: why is sean torn over the actor's death? A: walker was young

Open Challenges

• TabFact: Language and Semi-Structured Reasoning

District	Incumbent	Party	Result	Candidates
California 3	John E. Moss	democratic	re-elected	John E. Moss (d) 69.9% John Rakus (r) 30.1%
California 5	Phillip Burton	democratic	re-elected	Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%
California 8	George Paul Miller	democratic	lost renomination democratic hold	Pete Stark (d) 52.9% Lew M.Warden , Jr. (r) 47.1%
California 14	Jerome R. Waldie	republican	re-elected	Jerome R.Waldie (d) 77.6% Floyd E. Sims (r) 22.4%
California 15	John J. Mcfall	republican	re-elected	John J. Mcfall (d) unopposed

United States House of Representatives Elections, 1972

John E. Moss and Phillip Burton are both re-elected in the house of representative election in 1972.

Acknowledgment

Sponsors: Adobe, Amazon, ByteDance, DARPA, Facebook, Google, IBM, Intel, LogMeIn, NVIDIA, and Tencent.

Thank you!

- UCSB NLP Group: <u>nlp.cs.ucsb.edu</u>
- AREL: <u>https://github.com/eric-xw/AREL</u>
- DeepPath: <u>https://github.com/xwhan/DeepPath/</u>
- Walk the Block: <u>https://github.com/xwhan/walk_the_blocks</u>
- Cross-Lingual Dialog State Tracking: <u>https://github.com/wenhuchen/Cross-Lingual-NBT</u>
- MojiTalk: <u>https://github.com/claude-zhou/MojiTalk</u>

